

C
+

+
 I

N
S

T
I
T
U

T
E
 –

 P
R

O
G

R
A

M
 Y

O
U

R
 F

U
T
U

R
E

CLA – C Programming Language
Certified Associate

Exam Syllabus (ver. 2.0, 2015)

www.cppinstitute.org
www.pearsonvue.com/cpp/

Copyright © 2012 by C++ Institute. All Rights Reserved.

These C++ Institute CLA Exam Objectives are subject to

change without notice.

Absolute basics

 languages: natural and artificial,

 machine languages,

 high-level programming languages,

 obtaining the machine code: compilation process,

 writing simple programs,

 variables,

 integer values in real life and in C,

 integer literals.

Data types

 floating point values in real life and in C,

 float literals,

 arithmetic operators,

 priority and binding,

 post- and pre-incrementation and decrementation,

 operators of type op=,

 char type and ASCII code,

 char literals,

 equivalence of int and char data,

 comparison operators,

 conditional execution and if keyword,

 printf() and scanf() functions.

Flow control

 conditional execution: the “else” branch,

 integer and float types,

 conversions,

 typecast and its operators,

 loops – while, do and for,

 controlling the loop execution – break and continue,

 logical and bitwise operators.

http://www.cppinstitute.org/
http://www.pearsonvue.com/cpp/

C
+

+
 I

N
S

T
I
T
U

T
E
 –

 P
R

O
G

R
A

M
 Y

O
U

R
 F

U
T
U

R
E

CLA – C Programming Language
Certified Associate

Exam Syllabus (ver. 2.0, 2015)

www.cppinstitute.org
www.pearsonvue.com/cpp/

Copyright © 2012 by C++ Institute. All Rights Reserved.

These C++ Institute CLA Exam Objectives are subject to

change without notice.

Arrays

 switch: different faces of ‘if’,

 arrays (vectors),

 sorting in real life and in a computer memory,

 initiators,

 pointers,

 an address, a reference, a dereference and the sizeof operator,

 simple pointer and pointer to nothing (NULL),

 & operator,

 pointers arithmetic,

 pointers vs. arrays: different forms of the same phenomenon,

 using strings,

 basic functions dedicated to string manipulation.

Memory management and structures

 array indexing,

 the usage of pointers: perils and disadvantages,

 void type,

 arrays of arrays and multidimensional arrays,

 memory allocation and deallocation: malloc() and free() functions,

 arrays of pointers vs. multidimensional arrays,

 structures,

 declaring, using and initializing structures,

 pointers to structures and arrays of structures,

 basics of recursive data collections.

Functions

 functions,

 how to declare, define and invoke a function,

 variables’ scope, local variables and function parameters,

 pointers, arrays and structures as function parameters,

 function result and return statement,

 void as a parameter, pointer and result,

 parameterizing the main function,

 external function and the extern declarator,

 header files and their role.

http://www.cppinstitute.org/
http://www.pearsonvue.com/cpp/

C
+

+
 I

N
S

T
I
T
U

T
E
 –

 P
R

O
G

R
A

M
 Y

O
U

R
 F

U
T
U

R
E

Copyright © 2012 by C++ Institute. All Rights Reserved.

These C++ Institute CLA Exam Objectives are subject to

change without notice.

CLA – C Programming Language
Certified Associate

Exam Syllabus (ver. 2.0, 2015)

www.cppinstitute.org
www.pearsonvue.com/cpp/

Files and streams

 files vs. streams,

 header files needed for stream operations,

 FILE structure,

 opening and closing a stream, open modes, errno variable,

 reading and writing to/from a stream,

 predefined streams: stdin, stdout and stderr,

 stream manipulation: fgetc(), fputc(), fgets() and fputs() functions,

 raw input/output: fread() and fwrite() functions.

Preprocessor and complex declarations

 preprocessor,

 #include: how to make use of a header file,

 #define: simple and parameterized macros,

 #undef directive,

 predefined preprocessor symbols,

 macrooperators: # and ##,

 conditional compilation: #if and #ifdef directives,

 avoiding multiple compilations of the same header files,

 scopes of declarations, storage classes,

 user –defined types,

 pointers to functions,

 analyzing and creating complex declarations.

http://www.cppinstitute.org/
http://www.pearsonvue.com/cpp/

