

C
+

+
 I

N
S

T
I
T
U

T
E
 –

 P
R

O
G

R
A

M
 Y

O
U

R
 F

U
T
U

R
E

CPP – C++ Certified Professional
Programmer

Exam Syllabus (ver. 1.1, 2018)

www.cppinstitute.org
www.pearsonvue.com/cpp/

Copyright © 2012-2018 by C++ Institute. All Rights

Reserved. These C++ Institute CPP Exam Objectives are

subject to change without notice.

Templates

 What are templates,

 Basic syntax,

 Function templates,

 Class templates,

 When to use templates,

 Typical problems when using templates.

STL Sequential containers

 Types of sequential containers,

 vector, deque, list and their API,

 Sequential container adapters – stack, queue and priority queue,

 Dealing with objects as container elements,

 Usage – when to use what.

STL Associative containers

 Types of associative containers,

 set and multiset – behavior and API,

 map and multimap – behavior and API,

 Putting objects into set and map,

 Usage – when to use what.

Non-modifying STL algorithms

 Definition of a non-modifying algorithm

 List of non-modifying algorithms: for_each, find, find_if, find_end, find_first_of,
adjacent_find, count, count_if, mismatch, equal, search, search_n,

 Examples,

 Container compatibility.

http://www.cppinstitute.org/
http://www.pearsonvue.com/cpp/

C
+

+
 I

N
S

T
I
T
U

T
E
 –

 P
R

O
G

R
A

M
 Y

O
U

R
 F

U
T
U

R
E

CPP – C++ Certified Professional
Programmer

Exam Syllabus (ver. 1.1, 2018)

www.cppinstitute.org
www.pearsonvue.com/cpp/

Copyright © 2012-2018 by C++ Institute. All Rights

Reserved. These C++ Institute CPP Exam Objectives are

subject to change without notice.

Modifying STL algorithms

 Definition of a modifying algorithm,

 List of modifying algorithms: transform, copy, copy_backward, swap, swap_ranges,
iter_swap, replace, fill, fill_n, generate, generate_n, remove, remove_if, unique,
unique_copy, reverse, reverse_copy, rotate, partition, stable_partition

 Examples,

 Container compatibility.

Sorting STL operations

 List of sorting algorithms: random_shuffle, sort, stable_partition, lower_bound,
upper_bound, equal_range, binary_search,

 Examples,

 Containers compatibility,

 Sorting of objects.

STL merge operations

 List of merging algorithms: merge, includes, min_element, max_element,
inplace_merge,

 STL operations for sets,

 Examples,

 Container compatibility.

STL utilities and functional library

 STL “small” tools,

 List of useful functors,

 Examples.

STL advanced I/O

 Classes which provide the input and output capability,

 Console I/O,

 Formatting,

 File I/O,

 Strings I/O,

 Examples.

http://www.cppinstitute.org/
http://www.pearsonvue.com/cpp/

